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DISCUSSION OF: FINITE ELASTO-PLASTIC
DEFORMATION-I. THEORY AND

NUMERICAL EXAMPLES [1]

J, P. CARTER

Department of Civil Engineering. King's College. London. England

The authors have presented a numerical method for solving problems involving finite
elasto-plastic deformations. Their formulation is based on a rate approach with a constitutive law
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is the Jaumann stress rate;
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are the deformation rate and spin tensors respectively and P ijkl is a matrix of values which are
functions of the current stress state, With the material law of eqn (1), the authors have obtained
both a finite element and an analytical solution to the problem of the finite extension of a cube of
elastic material in plane strain and plane stress.

The writer has also obtained such a solution for the plane strain example (Fig. I). Two forms of
Hooke's Law were investigated. These are. in plane strain terms:

(i) If during an increment in loading a material particle displaces from a point Pi in space to a
point Pi + 10 then denote the initial total stress and total strain at Pi by the vectors
UfO = (rT~.:, rT~,~. rT~,~)T and e") = (e~:. e~\). e~,~)r respectively. Similarly at point Pi.' after the load
increment is applied denote the total stress and strain by the vectors u li

+ II = (rT~x+ll, rT~~,.+II. rT~:")'

and e"+11 = (e~,+II. e~i,~I\ e~,~I')T respectively. We postulate Hooke's law, in this case, to be

Defining quantities ~u and Ae by

~e = eli '·11_ eli'

and noting that u(" = eli' = 0 for this particular load increment. then (5) reduces to

~u = Dae.

The matrix D is assumed to be given by

(5)

(6)

(7)

(8)

E(I-v) r I
D = -(l-+-v-'-)-'-(l---'2=-v-) C(10- v)

(E = Young's modulus and v = Poisson's ratio)

tThe symbol ..... denotes material differentiation.
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as in the infinitesimal case, and the strain vector ~e consists of the Lagrange components for this
increment. Note that u Hl and eli) are formed merely by the summation of all previous incremental
values.

This form of constitutive law is equivalent to that of the authors (eqn I) if we consider the
products of initial stress components and rotation to be negligible. This may be achieved by using
small loading increments, and indeed, if rotation is absent, then eqn (I) and eqn (5) are equivalent.

Oi) The second adopted form of Hooke's law was suggested by Biot[21. It is

t = C~e (10)

where t = (t". t~~. tdT
• C is a symmetric matrix of material constants and ole is as above. The

vector t was considered by Biot to be the true increment of stress for an increment of
deformation in an initially stressed medium. The quantities au and t are related by

(II)

where II" is the rigid body rotation associated with the deformation. For the numerical example
the writer has taken C = D.

Figure I shows a comparison of the load (P)-stretch (A) response of the elastic material for
each form of Hooke's law. Poisson's ratio was taken as 0·4. The writer's results were obtained
using both a finite element technique and a direct solution. Both agreed to within 3%. Table I
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Fig. I. Unit cube extension.

Table I. Comparison of solutions for the homogeneous extension of elastic+
bodies

P,lbX 10" A, U,. Ib/in' x 10 h

Finite Finite Finite
Exact element Exact element Exact element

Osias and fl· 57 6·59 4·4X 4-46
Swedlow

Hooke's Law (,'57t fI'57 HX{ 4·54
Form (i)

Hooke's Law IHM x

Form (ii)

1·79 1·79

1·79 1·80

x

+E = 10" Ib/in'. t' =0·4 in all cases and in general.
:j:P. = ()·3f1788E!(v' + I').

~P,. = E!(v'h·).
~A,. =ell 1')1,'.

1,,= I·().
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shows a comparison of the maximum load Pc and the associated values A,. and (Tn for each
method of analysis. Note in particular that eqn (I) and eqn (8) lead to identical solutions in this
trivial case involving zero-rotation. But these results also show, by simple example, how the
solution to a problem involving finite deformations can be very different, depending on the form
adopted for the constitutive law.
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